Exploring
首页
  • Java

    • 面向对象的思想OOP
    • 浅谈Java反射原理
    • endorsed覆盖JDK中的类
  • 认证与授权

    • LDAP概念和原理介绍
    • OAuth2介绍
  • Impala

    • Impala 介绍
  • MySQL

    • 关于MySQL的一些面试题
    • 解决MySQL不到中文数据
    • 数据库之事务与实现原理
  • Oracle

    • oracle的表空间,用户管理,表操作,函数
    • oracle的查询、视图、索引
    • plsql简单入门
  • Redis

    • 数据类型详解
    • 跳越表
    • 数据持久化的两种方式
  • 共识算法

    • gossip
  • RPC

    • GRPC初识与快速入门
    • ProtocolBuffer基本语法
  • RabbitMQ

    • RabbitMQ入门程序之HelloWorld
    • RabbitMQ之工作模式
  • Zookeeper

    • Zookeeper一文入门
  • Docker

    • Docker入门初体验
  • Maven

    • 把自己的包到Maven中央仓库
    • Maven之自定义插件
  • Nginx

    • nginx的安装
    • nginx的配置文件
    • nignx 的变量
  • Tomcat

    • Servlet3通过SPI进行注册组件
  • Vagrant

    • vagrant 初始化
    • vagrant 常用配置
    • vagrant 自己制作 box
  • Linux

    • 启动方式 Systemd
    • 后台服务
    • 防火墙与 Iptables
  • 设计模式

    • 设计模式-代理
    • 设计模式-单例模式
    • 设计模式-迭代器
  • 分布式

    • CAP 理论
  • 数据结构

    • 数据结构之堆Heap
    • 数据结构之哈希表
    • 数据结构之队列
  • 计算机网络

    • HTTP与HTTPS详解
    • 浅谈DNS协议
    • ISP中的网络层
  • 算法

    • 常用查找算法及Java实现
    • 常用排序算法及Java实现
    • 迪杰斯特拉算法
  • 操作系统

    • 操作系统之进程调度算法
    • 操作系统之进程通讯IPC
    • 操作系统之内存管理
  • 抓包

    • 生成安卓系统证书
  • 加解密

    • 常见加密算法
    • 公开秘钥基础知识
    • RSA 解析
  • Windows

    • scoop 包管理
    • windows-terminal 配置
    • 增强 PowerShell
归档
Github (opens new window)
首页
  • Java

    • 面向对象的思想OOP
    • 浅谈Java反射原理
    • endorsed覆盖JDK中的类
  • 认证与授权

    • LDAP概念和原理介绍
    • OAuth2介绍
  • Impala

    • Impala 介绍
  • MySQL

    • 关于MySQL的一些面试题
    • 解决MySQL不到中文数据
    • 数据库之事务与实现原理
  • Oracle

    • oracle的表空间,用户管理,表操作,函数
    • oracle的查询、视图、索引
    • plsql简单入门
  • Redis

    • 数据类型详解
    • 跳越表
    • 数据持久化的两种方式
  • 共识算法

    • gossip
  • RPC

    • GRPC初识与快速入门
    • ProtocolBuffer基本语法
  • RabbitMQ

    • RabbitMQ入门程序之HelloWorld
    • RabbitMQ之工作模式
  • Zookeeper

    • Zookeeper一文入门
  • Docker

    • Docker入门初体验
  • Maven

    • 把自己的包到Maven中央仓库
    • Maven之自定义插件
  • Nginx

    • nginx的安装
    • nginx的配置文件
    • nignx 的变量
  • Tomcat

    • Servlet3通过SPI进行注册组件
  • Vagrant

    • vagrant 初始化
    • vagrant 常用配置
    • vagrant 自己制作 box
  • Linux

    • 启动方式 Systemd
    • 后台服务
    • 防火墙与 Iptables
  • 设计模式

    • 设计模式-代理
    • 设计模式-单例模式
    • 设计模式-迭代器
  • 分布式

    • CAP 理论
  • 数据结构

    • 数据结构之堆Heap
    • 数据结构之哈希表
    • 数据结构之队列
  • 计算机网络

    • HTTP与HTTPS详解
    • 浅谈DNS协议
    • ISP中的网络层
  • 算法

    • 常用查找算法及Java实现
    • 常用排序算法及Java实现
    • 迪杰斯特拉算法
  • 操作系统

    • 操作系统之进程调度算法
    • 操作系统之进程通讯IPC
    • 操作系统之内存管理
  • 抓包

    • 生成安卓系统证书
  • 加解密

    • 常见加密算法
    • 公开秘钥基础知识
    • RSA 解析
  • Windows

    • scoop 包管理
    • windows-terminal 配置
    • 增强 PowerShell
归档
Github (opens new window)
  • 数据结构

  • 计算机网络

    • HTTP与HTTPS详解
    • 浅谈DNS协议
    • ISP中的网络层
    • OSI的七层模型
    • TCP的滑动窗口与拥塞控制
    • TCP的三次握手与四次挥手
      • TCP三次握手
        • 流程
        • 动图演示
        • 一些问题
      • TCP四次挥手
        • 流程
        • 问题
      • 附录
  • 算法

  • 操作系统

  • 基础
  • 计算机网络
unclezs
2020-07-25
0
目录

TCP的三次握手与四次挥手

# TCP三次握手

三次握⼿的⽬的是建⽴可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,⽽三次握⼿最主要的⽬的就是双⽅确认⾃⼰与对⽅的发送与接收是正常的。

第⼀次握⼿:Client 什么都不能确认;Server 确认了对⽅发送正常,⾃⼰接收正常 第⼆次握⼿:Client 确认了:⾃⼰发送、接收正常,对⽅发送、接收正常;Server 确认了:对⽅发送正常,⾃⼰接收正常 第三次握⼿:Client 确认了:⾃⼰发送、接收正常,对⽅发送、接收正常;Server 确认了:⾃⼰发送、接收正常,对⽅发送、接收正常

所以三次握⼿就能确认双发收发功能都正常,缺⼀不可。

# 流程

  1. TCP服务器进程先创建传输控制块TCB,时刻准备接受客户进程的连接请求,此时服务器就进入了LISTEN(监听)状态;
  2. TCP客户进程也是先创建传输控制块TCB,然后向服务器发出连接请求报文,这是报文首部中的同部位SYN=1,同时选择一个初始序列号 seq=x ,此时,TCP客户端进程进入了 SYN-SENT(同步已发送状态)状态。TCP规定,SYN报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号。
  3. TCP服务器收到请求报文后,如果同意连接,则发出确认报文。确认报文中应该 ACK=1,SYN=1,确认号是ack=x+1,同时也要为自己初始化一个序列号 seq=y,此时,TCP服务器进程进入了SYN-RCVD(同步收到)状态。这个报文也不能携带数据,但是同样要消耗一个序号。
  4. TCP客户进程收到确认后,还要向服务器给出确认。确认报文的ACK=1,ack=y+1,自己的序列号seq=x+1,此时,TCP连接建立,客户端进入ESTABLISHED(已建立连接)状态。TCP规定,ACK报文段可以携带数据,但是如果不携带数据则不消耗序号。
  5. 当服务器收到客户端的确认后也进入ESTABLISHED状态,此后双方就可以开始通信了。

# 动图演示

# 一些问题

# 为什么不四次握手?

四次握手的过程就是把第二次握手拆分成了两次,一次服务器响应ACK,再一次发回SYN来确定客户端的接收是否正常。因为握手没有数据传输,所以可以放在一次就可以完成的没有必要用两次。

# 为什么不两次握手?

一句话,主要防止已经失效的连接请求报文突然又传送到了服务器,从而产生错误。 如果使用的是两次握手建立连接,假设有这样一种场景,客户端发送了第一个请求连接并且没有丢失,只是因为在网络结点中滞留的时间太长了,由于TCP的客户端迟迟没有收到确认报文,以为服务器没有收到,此时重新向服务器发送这条报文,此后客户端和服务器经过两次握手完成连接,传输数据,然后关闭连接。此时此前滞留的那一次请求连接,网络通畅了到达了服务器,这个报文本该是失效的,但是,两次握手的机制将会让客户端和服务器再次建立连接,这将导致不必要的错误和资源的浪费。

# TCP四次挥手

# 流程

  1. 客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。
  2. 服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。
  3. 客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。
  4. 服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。
  5. 客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗*∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。
  6. 服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

# 问题

# 为什么需要四次挥手?

任何⼀⽅都可以在数据传送结束后发出连接释放的通知,待对⽅确认后进⼊半关闭状态。当另⼀⽅也没有数据再发送的时候,则发出连接>释放通知,对⽅确认后就完全关闭了TCP连接。

举个例⼦:A 和 B 打电话,通话即将结束后,A 说“我没啥要说的了”,B回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 >B 跟着⾃⼰的节奏结束通话,于是 B 可能⼜巴拉巴拉说了⼀通,最后B 说“我说完了”,A 回答“知道了”,这样通话才算结束。

# 为什么客户端最后还要等待2MSL?

MSL(Maximum Segment Lifetime),TCP允许不同的实现可以设置不同的MSL值。

第一,保证客户端发送的最后一个ACK报文能够到达服务器,因为这个ACK报文可能丢失,站在服务器的角度看来,我已经发送了FIN+ACK报文请求断开了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个2MSL时间段内收到这个重传的报文,接着给出回应报文,并且会重启2MSL计时器。

第二,防止类似与“三次握手”中提到了的“已经失效的连接请求报文段”出现在本连接中。客户端发送完最后一个确认报文后,在这个2MSL时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。

# 如果已经建立了连接,但是客户端突然出现故障了怎么办?

TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

# 为什么建立连接是三次握手,关闭连接确是四次挥手呢?

建立连接的时候, 服务器在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。 而关闭连接时,服务器收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送,从而导致多了一次。

# TIME_WAIT和CLOSE_WAIT过多什么原因及解决?

原因: 在高并发短连接的TCP服务器上,当服务器处理完请求后立刻主动正常关闭连接。这个场景下会出现大量socket处于TIME_WAIT状态。如果客户端的并发量持续很高,此时部分客户端就会显示连接不上。短连接表示“业务处理+传输数据的时间 远远小于 TIMEWAIT超时的时间”的连接。

解决: 负载均衡,将请求分发到多个服务器上进行处理。

# 附录

本文参考与动图来自:https://blog.csdn.net/qzcsu/article/details/72861891 (opens new window)

在 GitHub 编辑此页 (opens new window)
上次更新: 2024/02/25, 12:11:11
TCP的滑动窗口与拥塞控制
常用查找算法及Java实现

← TCP的滑动窗口与拥塞控制 常用查找算法及Java实现→

Theme by Vdoing | Copyright © 2018-2024 unclezs
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式